Basic concept in Number Theory and Finite fields MCQs

Basic concept in Number Theory and Finite fields MCQs

 1. Calculate the GCD of 1160718174 and 316258250 using Euclidean algorithm.. 

A. 882. 

B. 770. 

C. 1078. 

D. 1225. 

Answer= 1078


2. Calculate the GCD of 102947526 and 239821932 using Euclidean algorithm.. 

A. 11. 

B. 12. 

C. 8. 

D. 6. 

Answer= 6


3. Calculate the GCD of 8376238 and 1921023 using Euclidean algorithm.. 

A. 13. 

B. 12. 

C. 17. 

D. 7. 

Answer= 13


4. What is 11 mod 7 and -11 mod 7?. 

A. 4 and 5. 

B. 4 and 4. 

C. 5 and 3. 

D. 4 and -4. 

Answer= 4 and -4


5. Which of the following is a valid property for concurrency?. 

A. a = b (mod n) if n. 

B. (a-b). 

C. a = b (mod n) implies b = a (mod n). 

D. a = b (mod n) and b = c (mod n) implies a = c (mod n). 

Answer= All of the mentioned


6. [(a mod n) + (b mod n)] mod n = (a+b) mod n. 

A. TRUE. 

B. FALSE. 

C. Nothing can be said. 

D. None of the mentioned. 

Answer= TRUE


7. [(a mod n) – (b mod n)] mod n = (b – a) mod n. 

A. TRUE. 

B. FALSE. 

C. Nothing can be said. 

D. None of the mentioned. 

Answer= FALSE


8. 117 mod 13 = 

A. 3. 

B. 7. 

C. 5. 

D. 15. 

Answer= 15


9. The multiplicative Inverse of 1234 mod 4321 is. 

A. 3239. 

B. 3213. 

C. 3242. 

D. Does not exist. 

Answer= 3239


10. The multiplicative Inverse of 550 mod 1769 is. 

A. 434. 

B. 224. 

C. 550. 

D. Does not exist. 

Answer= 434


11. The multiplicative Inverse of 24140 mod 40902 is. 

A. 2355. 

B. 5343. 

C. 3534. 

D. Does not exist. 

Answer= Does not exist


12. (6x2 + x + 3)x(5x2 + 2) in Z_10 = 

A. x3 + 2x + 6. 

B. 5x3 + 7x2 + 2x + 6. 

C. x3 + 7x2 + 2x + 6. 

D. None of the mentioned. 

Answer= 5x3 + 7x2 + 2x + 6


13. Is x3 + 1 reducible over GF(2). 

A. Yes. 

B. No. 

C. Can't Say. 

D. Insufficient Data. 

Answer= Yes


14. Is x3 + x2 + 1 reducible over GF(2). 

A. Yes. 

B. No. 

C. Can't Say. 

D. Insufficient Data. 

Answer= No


15. Is x4 + 1 reducible over GF(2). 

A. Yes. 

B. No. 

C. Can't Say. 

D. Insufficient Data. 

Answer= Yes


16. The result of (x2 ? P), and the result of (x ? (x ? P)) are the same, where P is a polynomial.. 

A. TRUE. 

B. FALSE. 

C. Nothing can be said. 

D. None of the mentioned. 

Answer= TRUE


17. The GCD of x3+ x + 1 and x2 + x + 1 over GF(2) is. 

A. 1. 

B. x + 1. 

C. x2. 

D. x2 + 1. 

Answer= 1


18. The GCD of x5+x4+x3 – x2 – x + 1 and x3 + x2 + x + 1 over GF(3) is. 

A. 1. 

B. x. 

C. x + 1. 

D. x2 + 1. 

Answer= x + 1


19. The GCD of x3 – x + 1 and x2 + 1 over GF(3) is. 

A. 1. 

B. x. 

C. x + 1. 

D. x2 + 1. 

Answer= 1


20. Find the 8-bit word related to the polynomial x6 + x + 1. 

A. 1000011. 

B. 1000110. 

C. 10100110. 

D. 11001010. 

Answer= 1000011


21. If f(x)=x7+x5+x4+x3+x+1 and g(x)=x3+x+1, find f(x) + g(x).. 

A. x7+x5+x4. 

B. x7+x5+x4+x3+x. 

C. x4+x2+x+1. 

D. x6+x4+x2+x+1. 

Answer= x7+x5+x4


22. If f(x)=x7+x5+x4+x3+x+1 and g(x)=x3+x+1, find f(x) x g(x).. 

A. x12+x5+x3+x2+x+1. 

B. x10+x4+1. 

C. x10+x4+x+1. 

D. x7+x5+x+1. 

Answer= x10+x4+x+1


23. If f(x)=x7+x5+x4+x3+x+1 and g(x)=x3+x+1, find the quotient of f(x) / g(x).. 

A. x4+x3+1. 

B. x4+1. 

C. x5+x3+x+1. 

D. x3+x2. 

Answer= x4+1


24. Primitive Polynomial is also called a ____i) Perfect Polynomialii) Prime Polynomialiii) Irreducible Polynomialiv) Imperfect Polynomial. 

A. ii) and iii). 

B. only iii). 

C. iv) and ii). 

D. None. 

Answer= ii) and iii)


25. Which of the following are irreducible polynomials?i) X4+X3ii) 1iii) X2+1iv) X4+X+1. 

A. i) and ii). 

B. only iv). 

C. ii) iii) and iv). 

D. All of the options. 

Answer= All of the options


26. The polynomial f(x)=x3+x+1 is a reducible.. 

A. TRUE. 

B. FALSE. 

C. Nothing can be said. 

D. None of the mentioned. 

Answer= FALSE


27. Find the HCF/GCD of x6+x5+x4+x3+x2+x+1 and x4+x2+x+1.. 

A. x4+x3+x2+1. 

B. x3+x2+1. 

C. x2+1. 

D. x3+x2+1. 

Answer= x3+x2+1


28. On multiplying (x5 + x2 + x) by (x7 + x4 + x3 + x2 + x) in GF(28) with irreducible polynomial (x8 + x4 + x3 + x + 1) we get. 

A. x12+x7+x2. 

B. x5+x3+x3. 

C. x5+x3+x2+x. 

D. x5+x3+x2+x+1. 

Answer= x5+x3+x2+x+1


29. On multiplying (x6+x4+x2+x+1) by (x7+x+1) in GF(28) with irreducible polynomial (x8 + x4 + x3 + x + 1) we get. 

A. x7+x6+ x3+x2+1. 

B. x6+x5+ x2+x+1. 

C. x7+x6+1. 

D. x7+x6+x+1. 

Answer= x7+x6+1


30. Find the inverse of (x2 + 1) modulo (x4 + x + 1).. 

A. x4+ x3+x+1. 

B. x3+x+1. 

C. x3+ x2+x. 

D. x2+x. 

Answer= x3+x+1


31. Find the inverse of (x5) modulo (x8+x4 +x3+ x + 1).. 

A. x5+ x4+ x3+x+1. 

B. x5+ x4+ x3. 

C. x5+ x4+ x3+1. 

D. x4+ x3+x+1. 

Answer= x5+ x4+ x3+1


32. A very common field in this category is GF(2) with the set {1, 2} and two operations, addition and multiplication.. 

A. TRUE. 

B. FALSE. 

C. Nothing can be said. 

D. None of the mentioned. 

Answer= FALSE


33. Multiplication / Division follow which operation?. 

A. XOR. 

B. NAND. 

C. AND. 

D. OR. 

Answer= AND


34. What do the above numbers correspond to?0 1 2 3 40 4 3 2 10 1 2 3 4– 1 3 2 4. 

A. Both Additive Inverses. 

B. Both Multiplicative Inverses. 

C. Additive and Multiplicative Inverse respectively. 

D. Multiplicative and Additive Inverses respectively. 

Answer= Both Multiplicative Inverses


35. How many numbers cannot be used in GF(p) in 2n where n=4?. 

A. 2. 

B. 5. 

C. 3. 

D. 1. 

Answer= 3


36. If f(x)=x3+x2+2 and g(x)=x2-x+1, find: f(x) + g(x). 

A. x3+2x2-x+3. 

B. x3+x2+3. 

C. x3+x+1. 

D. x2+2x+4. 

Answer= x3+2x2-x+3


37. If f(x)=x3+x2+2 and g(x)=x2-x+1, find: f(x) – g(x). 

A. x3+x+4. 

B. x3+x+1. 

C. x3+x2+3. 

D. x3+3x+2. 

Answer= x3+x+1


38. If f(x)=x4+x3+2 and g(x)=x3-x+6, find: f(x) + g(x). 

A. 2x4+2x3+x+8. 

B. x4+2x3-x+8. 

C. x4+x2+x+8. 

D. x4+x3+8. 

Answer= x4+2x3-x+8


39. If f(x)=x4+x2-x+2 and g(x)=x2-x+1, find: f(x) – g(x). 

A. x4+1. 

B. x2+1. 

C. x2+2x+6. 

D. x4-1. 

Answer= x4+1


40. If f(x)=x3+x2+2 and g(x)=x2-x+1, find the quotient of  f(x) / g(x). 

A. x+3. 

B. x2+4. 

C. x. 

D. x+2. 

Answer= x+2


41. If f(x)=x3+x2+2 and g(x)=x2-x+1, find: f(x) x g(x). 

A. x4+x2+2x+2. 

B. x5+2x3+2x+3. 

C. x5+3x2-2x+2. 

D. x4+x2+x+1. 

Answer= x5+3x2-2x+2


42. Find the 8-bit word related to the polynomial x5 + x2 + x. 

A. 10011. 

B. 1000110. 

C. 100110. 

D. 11001010. 

Answer= 100110


43. Find the 8-bit word related to the polynomial x6 + x5 + x2 + x +1. 

A. 10011. 

B. 11000110. 

C. 100110. 

D. 1100111. 

Answer= 1100111


44. If f(x)=x7+x5+x4+x3+x+1 and g(x)=x3+x+1, find f(x) – g(x).. 

A. x7+x5+x4+x3. 

B. x6+x4+x2+x. 

C. x4+x2+x+1. 

D. x7+x5+x4. 

Answer= x7+x5+x4


45. 5/3 mod 7 = 

A. 2. 

B. 3. 

C. 4. 

D. 5. 

Answer= 4


46. The polynomial x4+1 can be represented as  

A. (x+1)(x3+x2+1). 

B. (x+1)(x3+x2+x). 

C. (x)(x2+x+1). 

D. None of the mentioned. 

Answer= None of the mentioned


47. -5 mod -3 = 

A. 3. 

B. 2. 

C. 1. 

D. 5. 

Answer= 1


48. Multiply the polynomials P1 = x5 +x2+ x) by P2 = (x7 + x4 +x3+x2 + x) in GF(28) with irreducible polynomial (x8 + x4 + x3 + x + 1). The result is. 

A. x4+ x3+ x+1. 

B. x5+ x3+x2+x+1. 

C. x5+ x4+ x3+x+1. 

D. x5+ x3+x2+x. 

Answer= x5+ x3+x2+x+1


49. Multiply 00100110 by 10011110 in GF(2^8) with modulus 100011011.The result is. 

A. 101111. 

B. 101100. 

C. 1110011. 

D. 11101111. 

Answer= 101111


50. Find the inverse of (x7+x+1) modulo (x8 + x4 + x3+ x + 1).. 

A. x7+x. 

B. x6+x3. 

C. x7. 

D. x5+1. 

Answer= x7


51. 7x = 6 mod 5. Then the value of x is. 

A. 2. 

B. 3. 

C. 4. 

D. 5. 

Answer= 3


52. The product of monic polynomials is monic.. 

A. TRUE. 

B. FALSE. 

C. Can't Say. 

D. None of the mentioned. 

Answer= TRUE


53. The product of polynomials of degrees m and n has a degree m+n+1.. 

A. TRUE. 

B. FALSE. 

C. Can't Say. 

D. None of the mentioned. 

Answer= FALSE


54. The sum of polynomials of degrees m and n has degree max[m,n].. 

A. TRUE. 

B. FALSE. 

C. Can't Say. 

D. None of the mentioned. 

Answer= Can't Say


55. (7x + 2)-(x2 + 5) in Z_10 = 

A. 9x2 + 7x + 7. 

B. 9x2+ 6x + 10. 

C. 8x2 + 7x + 6. 

D. None of the mentioned. 

Answer= 9x2 + 7x + 7


56. GCD(a,b) = GCD(b,a mod b). 

A. TRUE. 

B. FALSE. 

C. Nothing can be said. 

D. None of the mentioned. 

Answer= TRUE


57. All groups satisfy properties. 

A. G-i to G-v. 

B. G-i to G-iv. 

C. G-i to R-v. 

D. R-i to R-v. 

Answer= G-i to G-iv


58. An Abelian Group satisfies the properties. 

A. G-i to G-v. 

B. G-i to R-iv. 

C. G-i to R-v. 

D. R-i to R-v. 

Answer= G-i to G-v


59. A Ring satisfies the properties. 

A. R-i to R-v. 

B. G-i to G-iv. 

C. G-i to R-v. 

D. G-i to R-iii. 

Answer= G-i to R-iii


60. A Ring is said to be commutative if it also satisfies the property. 

A. R-vi. 

B. R-v. 

C. R-vii. 

D. R-iv. 

Answer= R-iv


61. An 'Integral Domain' satisfies the properties. 

A. G-i to G-iii. 

B. G-i to R-v. 

C. G-i to R-vi. 

D. G-i to R-iii. 

Answer= G-i to R-vi


62. A Field satisfies all the properties above from G-i to R-vi.. 

A. TRUE. 

B. FALSE. 

C. Nothing can be said. 

D. None of the mentioned. 

Answer= TRUE


63. In modular arithmetic : (a/b) = b(a^-1). 

A. TRUE. 

B. FALSE. 

C. Nothing can be said. 

D. None of the mentioned. 

Answer= FALSE


64. a.(b.c) = (a.b).c is the representation for which property?. 

A. G-ii. 

B. G-iii. 

C. R-ii. 

D. R-iii. 

Answer= G-ii


65. a(b+c) = ac+bc is the representation for which property?. 

A. G-ii. 

B. G-iii. 

C. R-ii. 

D. R-iii. 

Answer= R-iii


66. For the group Sn of all permutations of n distinct symbols, what is the number of elements in Sn?. 

A. n. 

B. n-1. 

C. 2n. 

D. n!. 

Answer= n!


67. For the group Sn of all permutations of n distinct symbols, Sn is an abelian group for all values of n.. 

A. TRUE. 

B. FALSE. 

C. Nothing can be said. 

D. None of the mentioned. 

Answer= FALSE


68. Does the set of residue classes (mod 3) form a group with respect to modular addition?. 

A. Yes. 

B. No. 

C. Can't Say. 

D. Insufficient Data. 

Answer= Yes


69. Does the set of residue classes (mod 3) form a group with respect to modular addition?. 

A. Yes. 

B. No. 

C. Can't Say. 

D. Insufficient Data. 

Answer= No

Previous Post Next Post